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What is mesh generation?

• Geometry from CAD (SDRC Ideas, Pro/Engineer, etc.)
• Mesh type determined by analysis; tetrahedra, hexahedra 

most common

Continuous domain
(Geometry)

Discretized Domain
(Mesh)

Discrete Solution
(FEA Results)



Overview
Why Is Hex Meshing Difficult?

• Hex meshing is difficult, because 
of chord propagation:
– Small change in surface mesh can 

effect non-local changes in mesh

– Mesh changes propagate across entire 
assembly because of shared surfaces

• In assemblies, shared surfaces introduce coupling

• Coupling is reduced for tet meshes

• Coupling introduces global components to hex meshing



Hexahedral Mesh Generation

• No “automatic” hex meshing algorithm known!
• Lots of semi-automated algorithms

Quad (surface)
algorithms

Sweeping
(extrusion)

N-Side
Primitives

Multisweep



Hex Meshing 
Begins With Quad Meshing

• Structured algorithms
– Mapping [COO82]

– Submapping [WHI96]

• Primitives [LI95]

• Advancing-front algorithms
– Paving [BLA91, CAS96] 

– Qmorph [OWE99a]



2D Mapping
a.k.a. “Trans-finite Interpolation”, TFI

• Parameterization of boundary into ξ ,η ∈[0,1] 
using corners & interval settings

• Boundary mesh x(0,η ), x(1,η ), x(ξ ,0), x(ξ ,1) 
• Compute interior mesh x(ξ ,η ) using TFI:

x(ξ ,η ) = (1 - η )x(ξ ,0) + η x(ξ ,1) + 
(1 - ξ ) ∆ x(0,η ) + ξ ∆ x(1,η )

 ∆ x(0,η ) = x(0,η ) - [(1 - η )x(0,0) + η x(0,1)]

 ∆ x(1,η ) = x(1,η ) - [(1 - η )x(1,0) + η x(1,1)]

∆ x(0,η ) ∆ x(1,η )

x(ξ ,0/1)-

x+ ∆ x-       -



Hex Meshing Primitives
Submap

• Parameterize boundary using vertex types and intervals
• Divide domain into mapped subregions
• Interpolate between subregion boundaries to get lower-

dimensional mesh boundaries
• Utilize mapping implementation to generate interior nodes 

from mesh boundaries



The Paving Algorithm

1) insert quadrilaterals by geometric projection 
into void

...

...

α

D1
D2

V

|V| = (|D1| + |D2|) / 2sinα



The Paving Algorithm
Intersection Detection

2) Detect & resolve intersecting fronts [CAS96]
– Intersections in 3-space difficult, because edges rarely 

intersect (chords of 3D surface)
– “Intersection” becomes decision on whether to join 

fronts

– Connect by joining nodes & edges on opposing fronts
– Need even-node loops on both sides

d

v

u

Case (C):

mid-mid (0) mid-end (1) end-end (1)

Angle:Proximity:

l1

l2

S = .45(l1+l2)/2

F = d/S + .25(1-|u•v|) + .1C
F < 1 ⇒ join edges



The Paving Algorithm
Smooth & Seam

3) Smooth locally
4) Seam, insert tucks/wedges

5) Repeat 1-4 until closed

Wedge:

Tuck:

Seam:



The Paving Algorithm
CleanUp

6) Clean up mesh topology

– Large family of topological cleanup operations [KIN96]

– Ultimate goal: minimize number of irregular nodes 
(valence != 4)

“Close-6”:

“Face Open”:



Mid-point Subdivision

• Split each d-dimensional region with a node, 
connect to all bounding (d-1)–dimensional 
region midpoints

• Utilize mapping to map subregions
• In 3d, requires 3-valent vertices/nodes 

at “corners”
• Automatic detection / scheme 

assignment challenging for 
non-trivial topology



Hex Meshing Primitives
Sweeping

• Fundamental assumption: match all source faces, nodes 
with counterparts on target (may be implied mesh on 
target)

• Fundamental problem: placement of nodes inside boundary 
loops on target & intermediate layers

• Fidelity to:

– Side surface variations

– Source/target surface variations

• Implementations:

– Morph-based (CUBIT)

– BMSweep (Ansys)

– Cooper



Morph-Based Sweep

• Given: source surface mesh xS, boundary mesh Ω T, 
compute interior mesh xT by solving:

DnxT = Pn|un
T|γ -1 un

T + Qn |vn
T|γ -1 vn

T

where

Pn = {(vn
S•vn

S)(un
S • DnxS) - (un

S • vn
S)(vn

S • DxS)}/|un
S|γ -1 |un

S× vn
S | 2

Qn = {(un
S•un

S)(vn
S • DnxS) - (un

S • vn
S)(un

S • DxS)}/|vn
S|γ -1 |un

S× vn
S | 2

Dnx = G22nDξ ξ xn - 2G12nDξ η xn + G11nDη η xn

G..n, D..n, un, vn = f(xn, xnm)

• Compute each layer mesh based on source & bounding meshes
• Work by Pat Knupp, Sandia National Labs [KNU99a]



Morph-Based Sweep
Examples



BMSweep Algorithm [STA98]

• Compute sweepable mesh on source surface
• Compute background triangular mesh for source surface, 

using only boundary nodes
• Compute barycentric coordinates and offset distance of nodes 

with respect to the containing background triangle on source 
and target surfaces

• At each layer, place interior nodes according to interpolated 
barycentric coordinates & offsets wrt “elevated” background 
triangles

On source/target: On layer u:
xi’S = ai

Sx1i
S + bi

S x2i
S + ci

Sx3i
S xi’u = ai

STx1i
u + bi

ST x2i
u + ci

STx3i
u

diS = |xi
S - xi’ S|  xi

u = xi’u + di
t v(x1i

u, x2i
u, x3i

u)



BMSweep Algorithm
Examples



Frustum height 5 maj rad 1 min rad .8 top .5
Brick x 0.4
Body 2 move z 2.5 x .4
Subtr 2 from 1
Vol 1 scheme sweep source 14 12 targ 2
Vol 1 size .2
Surf 14 12 2 scheme pave
Surf 15 scheme submap
Mesh vol 1
Quality vol 1 allmet
Export acis ‘frust.sat’

(simple 3d example, manual setting)



Decomposition-Based
Hex Meshing Technique

• Use decomposition to reduce the problem to simpler pieces

• Requires:
– Primitive algorithms, to mesh pieces
– Tools, to choose algorithms and setup input
– Infrastructure, for common data (mesh, geometry, etc.) 

and support (visualization, etc.)



(assembly meshing example)

Sphere rad 1 xpos ypos zpos
Web bod 1 cylinder rad .2
Merge all
Vol 1 scheme sweep source 13 targ 15
Vol 3 sch sweep
Vol all siz .05
Mesh vol all



Other Useful Tools for
Hex Mesh Generation

• Interval matching
• Automatic mesh scheme selection
• Geometry decomposition tools
• Multisweep



Hex Meshing Tools
Interval Assignment

• Task: quad-mesh a collection of surfaces which 
share edges

• Challenge: quad meshes constrain the number of 
intervals on boundary of a surface to be even

Surface Chords:



Interval Assignment
Constraints

• Some quad algorithms further constrain intervals

Map:
I1 = I3

I2 = I4

Submap:
I1 = I2 + I3 +  I4 +  I5 +  I6

Triangle Primitive:
 I2 + I3 >  2I1

... 

I2

I1

I4

I3
I1

I5

I4

I3

I6

I2

I2 I3

I1



Interval Assignment
Optimization Problem

• Cast interval constraints as an optimization problem:
• “Over a collection of surfaces, minimize deviation from 

initial intervals (x) subject to surface algorithm constraints 
(Ax=b)
– I, i = Desired, computed interval settings
– Independent variable: x := |I-i|
– Constraints: Ax = b
– Minimize: cTx

•  Different forms of c have been tried
– Minimize summed deviation from goal (Li95)
– Minimize max deviation from goal (TAM93)
– Optimize lexicographic deviation from goal (MIT97)



Interval Assignment
Examples

9

9
10

7

7
14

Minimize lexicographic vector of deviations:

9

9
10

9

1
10

Minimize sum of deviations:



Interval Assignment
Issues

• Affects both robustness & quality
• New constraints being discovered and added

– Volume sweeping constraints [SHEP99] :

– Skew reduction constraints [KER99]
– Hex meshes intrinsically constrain surface mesh (not 

really interval constraints, but close; see [MIT96])
• Automation important because it reduces manual 

effort in quad-hex mesh generation 

Constraint:
 Intervals inside = 
Intervals outside

InsideOutside



Hex Meshing Tools
Auto Algorithm Selection

• Meshing toolkit implies many tools
• Need to automatically choose tools:

– Eliminates need to “touch” entire model
– Relieves user from knowing about all the tools

• Three classes of meshing algorithms:
– Map, submap, primitive

– Sweep, Multisweep

– Free-meshing



Auto Algorithm Selection
Vertex, Edge Types

• Vertex types designate the type of mesh around a vertex:

• Angle of curves meeting at a vertex can be in a range about 
some ideal value

• First step in automatic algorithm selection is assignment of 
vertex types

• Edge types can be classified in same manner

End (1) Side (0) Corner (-1) Reversal(-2)



Auto Algorithm Selection
Map, Submap

• A surface can be mapped or submapped if the 
sum of vertex types is four [WHI96]

• A surface is mapped if all vertices are either Side 
or End, submapped otherwise

• A volume is mapped or submapped if all its 
surfaces can be mapped or submapped; 
submappable volumes have vertices with valence 
> 4



Auto Algorithm Selection
Auto Sweep Detect [WHI99]

• Swept volumes must be bounded by non-intersecting 
chains of mapped/submapped surfaces:

• Can parameterize chain surfaces in a consistent  global 
parameter system
– Consistent means C0-continuous parameters where 

surfaces meet
– Chains will have periodic boundary where parameter 

“jumps”

Chain B

Chain A



Auto Algorithm Selection
Auto Sweep Detect (cont)

• Two additional constraints: traversing from source/target to 
linking surface over two edges heads in:
– Same global parametric direction if edges of same edge 

type (End or Corner)
– Opposite global parametric direction if different edge 

type

L1 S1

C1

E1

Sweep
Direction L1

L2
S1

E1

E2

S2

S3



Hex Meshing Tools
Geometry Decomposition

• Manual decomposition:
– Similar to typical CAD operations
– Some tuning necessary for application to meshing

• Cut with existing surfaces/bodies
• Cut by specifying cutting surface data instead of geometry entity
• Keep both pieces (decomposing, not removing material)

• Automatic decomposition
– EVG
– UW automatic decomposition work:



Hex Meshing Algorithms
Multi-sweep Algorithm

• Primarily a topological variant of sweeping
• Problem: Find/compute/effect correspondence between 

mesh nodes & faces on all sources and targets

• Variants:
– CooperTool [BLA96]
– CUBIT Multisweep [LAI99]



Assembly Hex Mesh Generation
Toolkit Approach

Geometry 
Decomposition

Mesh Scheme
Selection

12 1222

10

8

Interval
Assignment

Mesh Generation
Mesh Quality

Analysis

Geometry Validity,
BC Assignment

Symm
Shell



Hexahedral Mesh Generation

• No “automatic” hex meshing algorithm known!
• Lots of semi-automated algorithms

Quad (surface)
algorithms

Sweeping
(extrusion)

N-Side
Primitives

Combined Use in
Large Assemblies

Multisweep}
B61 Antenna Support
Structural Analysis
~258K Hex elements



The CUBIT Mesh Toolkit
Algorithms, Automatic Control and Infrastructure

Virtual Geometry, Topology & Mesh Interface

Viz Hoops Composite & Partition
Geometry

Merge Topology

CUBIT
Geometry ACIS Geometry

Pro E
Geometry

IDEAS
Geometry . . .

ANSYS

ABAQUS
Net CDF

Exodus II

STEPHealing
Local Ops

IGES

Auto
Feat.

Remove

Auto Decomp
Manual
Decomp       
         

Advanced Hex Smoothing

Tet DicingGeode
Hex
Dicing

H.T.P. OPT MS

Plaster Tets MSC

W
W

Sweep

Adv. Hex Smoothing

Int. Ass..

Automatic 
Algorithm 
Selection

LP
Map

Submap

Multi

Pave
Skew Control

Hex Improv.



Day 2 Outline

• Geometry decomposition
• Example: assembly hex mesh generation
• Boundary conditions
• Exporting/translating mesh
• Importing to Ansys, running analysis

• Advanced topics in meshing
• Assignment



Geometry Decomposition

• General goal: split one volume into 2 using a cutting 
surface

• Variants: by how cutting surface is defined
– Explicit vs implicit
– Geometric shape

• ‘Webcut’ command used for most decomposition in CUBIT
• Geometric variants:

– With plane; defined by:
• Existing model surface
• Three model vertices
• Coordinate plane, possibly offset

– With cylinder
– With extended surface
– With “tool” body



Example, assembly mesh generation 
with decomposition

Import acis ‘frust.sat’
Cyl rad .05 hei .2
Bod 2 rot 90 ab y
Bod 2 mov x .3 y .1 z 2.38
Bod 2 copy mov y -.2
Unite all
Section bod all yplane
Webcut body all plan zplan offset 2.3
Web bod all except 4 plan yplan off .2
Imprint all
Merge all
Volume all size .1 scheme auto
Mesh vol all



Boundary conditions

• Three primary types of boundary conditions in meshing:
– Material: not really a BC; groups elements for purposes 

of material type identification
• In CUBIT: element block

– Dirichlet: applied (usually) at nodes; assigns a 
dependent variable (e.g. Temperature) for a set of 
independent variables (e.g. spatial/node position)

• In CUBIT: nodeset
– Neumann: applied over lengths/areas/volumes; assigns 

derivative of dependent variable (e.g. dF/dA = pressure) 
for a set of independent variables (e.g. spatial positions 
over a mesh face)

• In CUBIT: sideset



Exporting mesh

• CUBIT commands:
 [block | nodeset | sideset] <id> <geometry_entity_list>
 Export genesis ‘<filename>’ [block <block_ids>]

• Examples:
 Block 100 volume 1
 Nodeset 2001 surface 1 2 3 curve 100 volume 3
 Sideset 300 surface 2
 Export genesis ‘test.g’

• Notes/gotchas:
– Volume blocks created automatically if no blocks 

explicitly created; surface blocks not (can change 
default behavior with setting)

– For Ansys, use nodesets for neumann BC’s (will explain 
later)



Exodus to Ansys

• ExodusII is a mesh format used as a standard throughout Sandia
• ExodusII translated to Ansys using a translator outside cubit:

 Exoans <exo_file> <ansys_BASE_name>
• Produces 5 files:

– <base_name> : Overall command file, which imports others
– <base_name>.node: node definitions
– <base_name>.elem: element definitions
– <base_name>.eset: component EB<block_id> definitions, one 

component per element block
– <base_name>.nset: component NS<nodeset_id> definitions, 

one component per nodeset
– <base_name>.sset: component definitions for sidesets, not 

used right now
• To use in Ansys, read <base_name> in as commands from a file



Exodus to Ansys

• In Ansys:
– Elements defined with default material, or can assign 

using EB components
– Dirichlet BC’s can be assigned directly to components
– Neumann BC’s:

• Could assign to element + “side”/load step, but that’s not 
easy in translator

• Can assign to all faces connected to specified group of 
nodes, using NS components

– Must make sure that each of those faces included in higher 
dimension element (e.g. hex) only once

– If that’s not the case, use > 1 nodeset/NS component

• To assign surface load:
– Define nodeset on desired surface (CUBIT)
– Select nodeset component, i.e. NSxxx (Ansys)
– Specify NS component when specifying surface load



Putting it all together: Ansys example

1. CUBIT:
(start with previous mesh)
Block 100 volume all
Nodeset 100 surface 27 32
Nodeset 200 surface 16
Export genesis ‘frust.g’

2. Sun:
exoans frust.g frust

3. Ansys:
• Enter preprocessor (\prep7)
• Select default material
• File->Read Input from…

• (select ‘frust’)
• Select->Comp/Assembly->Select Comp/Assembly… (select NS100)
• Loads->define loads->apply->structural->pressure->on nodes (select “Pick All”)

• Enter load value
• Select->Comp/Assembly->Select Comp/Assembly… (select NS200)
• Loads->define loads->apply->structural->displacement->on nodes (select “Pick All”)

• Select “all DOF”, enter 0.0 for value
• Proceed with analysis (remember to select all elements before doing analysis)



Advanced topics



Tetrahedral Mesh Generation
Delaunay Triangulation



Tetrahedral Mesh Generation
Delaunay Triangulation

• Point distribution, P



Tetrahedral Mesh Generation
Delaunay Triangulation

• Point distribution, P
• Triangulate points using 

“Delaunay criterion”, D(P)

– Delaunay criterion: circumcircle (2D) or circumsphere 
(3D) cannot contain any other point in P

– Triangulation methods:
• Point/triangle insertion: insert new point, remove elements 

whose circumcircles contain point, retriangulate region
• Arbitrary starting point, refine until Delaunay criterion met

– Transformations (diagonal flip) to improve mesh quality



Tetrahedral Mesh Generation
Delaunay Triangulation

• Point distribution, P
• Triangulate points using 

“Delaunay criterion”, D(P)
• Recover boundary



Tetrahedral Mesh Generation
Delaunay Triangulation

• Point distribution, P
• Triangulate points using 

“Delaunay criterion”, D(P)
• Recover boundary
• Why Delaunay?  Quality guarantee:

• However, in 3D, Delaunay criterion allows “slivers”
• Almost everyone uses (modified) Delaunay:

– Automatic
– Anisotropic mesh from point distribution
– Automatic

DelaunayDPT min,)(:)( αα >∀



Key Technology: 
A Geometry-Centric Process

symm 
plane

position

“foam”

“steel 
case” “impact”

Material Bound Cond Init Cond

⊗

• Why:

⇓ interactive detail

Fine geom ≈  Coarse geom

Basis: initial CAD model

• Model generation:
1 Start with well-defined 

design model
2 Use simplification 

strategies 
to obtain analysis model

3 Generate mesh
…



Virtual Topology
Composite Curve, Surface

V V V

F FF

Vo

E E E E

V V

F FF

Vo

E EE E

V V

FF F

Vo

E E

Original
Geometry

Composite
Curve

Composite
Surface

Caterpillar “wheel”



You Want Me To Mesh THAT?

• Geometry validity

• Geometric detail removal

• Tracking BC’s, other 
attributes

• Handling large meshes



• No intra-volume gaps, 
overlaps

• Contiguity in 
multi-material models

What’s a “Well-Defined” Model?

• All volumes are closed, 
i.e. they “hold water”

• No “bad” geometry

Not closed: Closed: Bolt with
press fit

Overlap   Gap

AF&F 
shared surfs

AF&F
non-shared 

surfs



• Boundary conditions, material identifiers

• Strategies for accomplishing this propagation:
– Names
– BC groups (sidesets, nodesets, etc.)
– Requires user identification of BC handles - can we automate 

this?
• Automatic tracking makes D2A easier

Tracking Model through Simplification & 
Decomp.

Specify on 
initial model:

symm plane
out surf

Propagate to 
analysis model:

symm plane
out surf



Comparative Study of
Hex, Tet Element Accuracy

• Being performed at CMU by Saigal & Owen (Ansys)
• Beam bending & torsion, poisson’s ratio .3 - .5
• Comparing linear tets, hexes, quadratic tets, hexes, fully 

and partially (quadratic) integration

• Figures from Pakal et. al, “A Comparative Study of Hexahedral and Tetrahedral Elements”, 
report to Sandia National Labs, 1999.

Figure A.3
 Bending  Case - Varied DOF

Error in End-Face Displacement vs. DOF
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Figure B.2 
Torsion Case - Varied DOF

Error in Mid-Point Shear Stress vs. DOF
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Homework 4, Problem 5

• Run the Ansys analysis described ealier, except:
– Use a hole instead of a protrusion

• Hints:
– Can either construct protrusion cylinders with larger 

axial length, place properly, and use CUBIT ‘subtract’, 
OR

– Can webcut, either with implicit cylinder or by placing 
protrusion cylinders & using extended surface webcut, 
then use CUBIT ‘delete body’ to delete small cylinder(s)

– Use material parameters given for problems 1-4 in 
homework 4

– Find the peak stress when the shaft is subjected to 
an axial load of 1000 N.
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